25 research outputs found

    Atypically slow processing of faces and non-faces in older autistic adults

    Get PDF
    Face recognition is a fundamental function that requires holistic processing. Differences in face processing have been consistently identified in autistic children, but it is unknown whether these differences persist across the adult lifespan. Using event-related functional magnetic resonance imaging, we measured holistic face processing with a rapid Mooney faces task in 50 autistic and 49 non-autistic participants (30–74 years). Behavioral tasks included a self-paced version of the same paradigm and a global–local processing task (Navon). Reduced detection rates for faces, but not non-faces, were found in autistic adults, including slower responses on all conditions. Without time constraints, differences in accuracy disappeared between groups, although reaction times in correctly identifying faces remained higher in autistic adults. The functional magnetic resonance imaging results showed lower activation in the left and right superior frontal gyrus in the autism group but no age-related differences. Overall, our findings point toward slower information processing speed rather than a face recognition deficit in autistic adults. This suggests that face-processing differences are not a core feature of autism across the adult lifespan. LAY ABSTRACT: Some theories suggested that social difficulties in autism arise from differences in the processing of faces. If face-processing difficulties are central to autism, then they should be as persistent as social difficulties across the lifespan. We tested this by asking autistic and neurotypical participants between 30 and 75 years to complete face detection tasks. Both autistic and neurotypical adults responded more slowly with age. When participants had to respond quickly, autistic adults made more errors in face detection regardless of their age. However, when the time constraint was removed, autistic adults performed as well as the neurotypical group. Across tasks, autistic adults responded more slowly when asked to detect both face and non-face stimuli. We also investigated brain activation differences in the face detection task with functional magnetic resonance imaging. The results indicated lower activation in the autism group in the left and right superior frontal gyrus. The superior frontal gyrus is not typically implicated in face processing but in more general processing, for example, keeping instructions in mind and following them. Together with the behavioral results, this suggests that there is no specific deficit in face processing in autistic adults between 30 and 75 years. Instead, the results suggest differences in general processing, particularly in the speed of processing. However, this needs to be investigated further with methods that are more sensitive to the timing of brain activation

    Reward-related neural responses are dependent on the beneficiary

    Get PDF
    Prior studies have suggested that positive social interactions are experienced as rewarding. Yet, it is not well understood how social relationships influence neural responses to other persons gains. In this study, we investigated neural responses during a gambling task in which healthy participants (NÂĽ31; 18 females) could win or lose money for themselves, their best friend or a disliked other (antagonist). At the moment of receiving outcome, person-related activity was observed in the dorsal medial prefrontal cortex (dmPFC), precuneus and temporal parietal junction (TPJ), showing higher activity for friends and antagonists than for self, and this activity was independent of outcome. The only region showing an interaction between the person-participants played for and outcome was the ventral striatum. Specifically, the striatum was more active following gains than losses for self and friends, whereas for the antagonist this pattern was reversed. Together, these results show that, in a context with social and reward information, social aspects are processed in brain regions associated with social cognition (mPFC, TPJ), and reward aspects are processed in primary reward areas (striatum). Furthermore, there is an interaction of social and reward information in the striatum, such that reward-related activity was dependent on social relationship.Pathways through Adolescenc

    Brainstorm: Structural brain abnormalities in schizophrenia and depression

    No full text
    In this thesis a variety of magnetic resonance imaging (MRI) studies in schizophrenia and major depressive disorder are described. The importance of genetic research by means of twin models, or the search for candidate genes and relating them to brain morphometry is highlighted. Furthermore, evidence is provide to show the importance of longitudinal (MRI) studies when investigating age-related changes or the confounding influences of antipsychotic medication on brain morphometry. In addition, the combination of different MRI techniques such as cortical thickness measurements and voxel-based morphometry can provide a better understanding of what is going on in the brain, not only cortical but also subcortical. Finally, the application of meta-analytic methods in MRI research increases our knowledge of which brain structures are affected, and shows the path to which future research should be directed

    Sex differences and structural brain maturation from childhood to early adulthood

    Get PDF
    Recent advances in structural brain imaging have demonstrated that brain development continues through childhood and adolescence. In the present cross-sectional study, structural MRI data from 442 typically developing individuals (range 8–30) were analyzed to examine and replicate the relationship between age, sex, brain volumes, cortical thickness and surface area. Our findings show differential patterns for subcortical and cortical areas. Analysis of subcortical volumes showed that putamen volume decreased with age and thalamus volume increased with age. Independent of age, males demonstrated larger amygdala and thalamus volumes compared to females. Cerebral white matter increased linearly with age, at a faster pace for females than males. Gray matter showed nonlinear decreases with age. Sex-by-age interactions were primarily found in lobar surface area measurements, with males demonstrating a larger cortical surface up to age 15, while cortical surface in females remained relatively stable with increasing age. The current findings replicate some, but not all prior reports on structural brain development, which calls for more studies with large samples, replications, and specific tests for brain structural changes. In addition, the results point toward an important role for sex differences in brain development, specifically during the heterogeneous developmental phase of puberty

    Development of risk-taking: contributions from adolescent testosterone and the orbito-frontal cortex

    No full text
    The role of puberty in the development of risk taking remains poorly understood. Here, in a normative sample of 268 participants between 8 and 25 years old, we applied a psycho-endocrine neuroimaging approach to investigate the contribution of testosterone levels and OFC morphology to individual differences in risk taking. Risk taking was measured with the balloon analogue risk-taking task. We found that, corrected for age, higher endogenous testosterone level was related to increased risk taking in boys (more explosions) and girls (more money earned). In addition, a smaller medial OFC volume in boys and larger OFC surface area in girls related to more risk taking. A mediation analysis indicated that OFC morphology partly mediates the association between testosterone level and risk taking, independent of age. Mediation was found in such a way that a smaller medial OFC in boys potentiates the association between testosterone and risk taking but suppresses the association in girls. This study provides insights into endocrinological and neural underpinnings of normative development of risk taking, by indicating that OFC morphology, at least partly, mediates the association between testosterone and risk-taking behavior
    corecore